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Abstract 

In this paper we deal with sensitivity analysis of the Multiobjective Linear Problem. We enlarge the range of meaningful 
regions of weights that can be handled easily from the tolerance approach point of view. The regions that we propose are 
important, because they represent the information that the decision maker is able to offer about the relationships between the 
importance of the different objectives, in terms of marginal substitution rates. Particularly, the well known interval, order 
and nonhomogeneous order relations are included. We also present an algorithm which reduces the computational effort, in 
order to get the maximum tolerance percentage. Several examples are included illustrating the results. © 1997 Elsevier 
Science B.V. 

Keywords: Multicriteria analysis; Sensitivity; Additional information 

1. Introduct ion 

Solving a Multiobjective Linear Problem by the 
weighted sum approach with positive estimated 
weights, gives an efficient solution to it. The study 
of this solution sensitivity with respect to the consid- 
ered weights, is a fundamental issue when looking 
for the best solution. 

Sensitivity analysis is difficult when dealing with 
perturbations in more than one coefficient or term at 
a time. The fact that critical regions are always 
polytopes and the difficulty that the decision maker 
(DM) finds to deal with such polytopes in practice, 

* Corresponding author. 

makes the focal point of  much of the research in 
sensitivity analysis to find meaningful perturbations 
of some parameters of the problem, so that the 
critical regions preserve a certain property. 

In this sense, the tolerance approach (Wendell, 
1984, 1985; Ravi and Wendell, 1989) presented a 
new perspective on sensitivity analysis in linear pro- 
gramming, for dealing with simultaneous and inde- 
pendent perturbations of the right hand side terms, of 
the objective function coefficients, and of the matrix 
coefficients. This approach incorporates the possibil- 
ity of using a priori information about the variability 
of the coefficients, in order to obtain larger tolerance 
percentages. 

Hansen et al. (1989) proposed the tolerance ap- 
proach to address sensitivity analysis of the Multiob- 
jective Linear Problem. They show how to calculate 
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a maximum tolerance percentage by which weights 
may deviate simultaneously and independently from 
their estimated values, yielding the same optimal 
basic solution. Specifically they address two useful 
particular cases: when there is no information about 
the variability and when the weights are known to 
vary within intervals. However there are some other 
interesting cases that may be addressed easily by this 
general approach. 

Usually the decision maker does not know pre- 
cisely the values of the objective function weights, 
but he may be able to specify some linear relations 
that the weights have to verify. For instance, it may 
be easy for him to give an order on the importance 
of the objectives. Thus if the objectives were ordered 
in increasing order of preference the weights would 
verify 

O ~ A I _ < A 2 _ _ _  . . .  _<Ap. 

More generally, the decision maker may be able 
to establish comparisons between the importance of 
an objective and a linear combination of the others. 

P P 

A i >_ ~_, mijAj,  Y'. mij < 1. 
j = l  j = l  

Notice that this kind of relations express partial 
information about the minimum marginal substitu- 
tion rates between the criteria (Carrizosa et al., 1995). 

In a general setting we may have the region where 
the weights can vary as 

a > 0 ,  

where M ~ R ,xp 

It means that upper and lower levels on the relations 
expressing the marginal substitution rates can be 
established. 

It is important to point out that, even without 
information about weights, they must always be 
considered nonnegative when dealing with efficient 
solutions. Otherwise, the approach does not represent 
sensitivity analysis of the Multiobjective Linear 
Problem, but sensitivity of a particular linear prob- 
lem obtained by weighting the individual problems. 

This paper focuses on enlarging the range of 
meaningful regions of weights, that can be handled 
easily from the tolerance approach point of view. We 

will center our attention in a particular class of 
relations, those that generate a nonnegative inverse 
matrix. Practical conditions for a matrix M having 
nonnegative inverse, that are interpretable in terms of 
the information the DM is offering, have been stud- 
ied recently by Carrizosa et al. (1995). In addition, 
we will see that the special properties of the informa- 
tion given in this form will enable us to simplify the 
procedure to calculate the maximum tolerance. 

The paper is organized as follows. In Section 2 
we state the problem and describe some preliminary 
results. Section 3 contains the main results. We 
present some illustrative examples in Section 4. Fi- 
nally, Section 5 is devoted to the conclusions and 
possible extensions. 

2. Statement of the problem 

Consider the multiple objective linear program 

Max Cx, 
s.t. Ax = b, 

x>__0. 
(1) 

w h e r e C ~ R  px", A E R  mxn, x ~ R " , b E R  m 

When solving this problem by the weighted sum 
approach, each objective c~x is associated with a 
positive weight A °, and all of them are combined 
into a composite criterion function h°'Cx. This leads 
to the following weighted sum problem: 

Max A°'Cx, 
s.t. Ax = b, (2) 

x>__0. 

Solving (2) with the estimated weights A °, (A ° > 
0), one obtains an efficient solution to (1). 

We assume that A has full rank, let B denote an 
optimal basis to (2), K the index set of the nonbasic 
variables and W the reduced cost matrix associated 
to basis B in the multiobjective problem of (1). For 
any matrix L we use the notation L r to denote the 
rth column of L. The column of matrix W, w',  is 
the reduced costs of the nonbasic variable r, for the 
different objective functions. Finally, we will denote 
by u' the transpose of a vector u. 
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In order to deal with multiplicative perturbations 
of  the estimated weights A °, we focus on the follow- 
ing perturbed problem: 

P 

Max Y ' . (A°+yrh°r) (C"x) ,  
r=l  (3)  

s.t. A x =  b,  
x > O ,  

with A°r > 0, r = 1 . . . . .  p. 
It is easy to see that in this formulation Yr repre- 

sents the percentage deviation from A°r . Let us de- 
_ 0 0 note A, - A r + Yr At, so we can write A = A ° + DAo T, 

where D :  is the diagonal matrix with )t o in its 
diagonal. 

For the sake of  completeness, we include without 
proof some results on the maximum tolerance of  
parameter y of  (3), when the weights are known to 
vary in a specified polyhedron A. Further details can 
be found in Hansen et al. (1989). 

The maximum tolerance, r *, is defined as the 
supremum of  the allowable tolerances, being a non- 
negative number r an allowable tolerance if the 
same basis B is optimal in (3) whenever A ~ A and 
the absolute value of  each perturbation Yr does not 
exceed r.  Notice that the maximum tolerance per- 
centage represents the maximum percentage by which 
weights may deviate simultaneously and indepen- 
dently from their estimated values yielding the same 
optimal basic solution. 

The maximum tolerance is determined by r * = 
min{r k, k ~ K} where r k is obtained as follows. 
1. r k =  +oo if and only if s u p { ) t ' w t , A ~ A }  is 

nonpositive. 
2. I f  ~'k < +oo then ~'k = Ily* IL where y*  is an 

optimal solution to min{llyll~, A ~ A, X w  k = 
O} where A = )to + DAoT" 

3. If  r k < +oo and A = RP,  then r k = 
( - E L  , o  . , 0 ,w;)t,)/(E,=,lw; l)tr). 

3. Results  

In this section, we present results to obtain the 
maximum tolerance percentage for (3), when the 
region of  variation of  weights is given by 

A = { A ~ R  p, A ~ O ,  a < M A < f l } ,  

where M ~ R px p, with M -  i > 0 and M -  la > 0. 

It is important to point out that this type of  region 
generalizes both the case of  interval weights and of  
no information, studied in Hansen et al. (1989), once 
the necessary constraints A i > 0 have been imposed. 

It should be noted also, that if the DM is only 
able to supply k ~ p relations, it is possible to extend 
the information to a p × p matrix by adding rela- 
tions A i ~ 0 independent with the former ones. 

First o f  all we give a necessary and sufficient 
condition to determine whether r k is finite or not. 

T h eorem 1. I f  A = { A ~ R  p, A > O ,  a < M A <  
/3}, with M f  I >_0 and M-lot>O, then r k =  +oo if  
and only i f  ( wk y M - l ~ < 0 where 

lflal if ( w ~ ) ' ( M - ' ) r  > 0, 

Yr = if ( w k ) t ( g  - 1) r < 0 ,  

[ arbitrary otherwise. 

Proof .  Let A = A ° +Dao 7. r k = + ~  if and only if 

sup (wk)  'A, 

s.t. ct < M A  < / 3 ,  

A > O ,  

is less than or equal to 0. 
By the linear transformation MA = y, the problem 

becomes 

sup (wk)'  M - l y ,  

s.t. a < y < f l ,  

which has nonnegative optimum value if and only if 
the stated condition holds. [] 

The following corollaries are special cases of  
Theorem 1. 

Coro l l a ry  1. I f  A = { A ~ R P ,  A > 0 ,  M A > 0 }  
with M-  i > 0 then 

~'k +o% ifandonlyif(wk)'(M-') " = <0, 

V r =  1 . . . . .  p.  

In a geometric sense, this last condition means 
that all the generators of  the convex cone A, are in 
the same halfspace determined by hyperplane wkgt = 
O, in which point A ° also is. 
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The cases addressed in Hansen et al. (1989) of 
weight intervals and of no information can be also 
obtained as corollaries of Theorem 1. 

C o r o l l a r y  2. If  A = { A ~ R  v, a < A < / 3 } ,  with 
ot > O, then 

tk = + ~, if  and only if  ( wk )' ~ < O, 

where 

yr = i fw)  < 0 ,  

arbitrary otherwise. 

C o r o l l a r y  3. I f  A = { A ~ R P, A > 0} then  T = + 

if  and only if  w k < O. 

Notice that, since we are looking for efficient 
solutions we have to consider only nonnegative 
weights. This fact is not considered in Hansen et al. 
(1989). Nevertheless, when dealing with multiplica- 
tive perturbations, the tolerance regions obtained by 
these authors are included into the nonnegative 
weights region, what validates their results. 

On the other hand, although in general, testing 
whether or not ~'k is finite involves the resolution of 
a linear program, in these particular cases it does not. 
Moreover, the test may be done analyzing matrix 
W tM-l .  In the special case analyzed in corollary 1, 
~'k will be infinite only when every element of 
column k is nonpositive. Notice also that in any 
case, ~'k being finite does not depend on the values 
of A °. 

Let us assume that the region where weights are 
known to vary is A = { A ~ R  v, A > 0 ,  a < M h  
</3}, with M -~ >0,  M-~a>O. 

Theorem 2. Provided that ~'k is finite, Zk is the 
optimum value of the problem 

min IlDi/~oM-ty- ell~, 

s.t. w~ tM- ly=O,  (P.k.)  

ct < y < fl. 

Proof. If  ~'k < + ~  then r k = Ily * IIo~ where y * is an 
optimal solution to 

min{llyll~, A = A ° + D ~ o y ~ A ,  )¢wk=O}, 

and performing the linear transformation MA--y ,  
the result follows. [] 

Notice that problem (P.k.) becomes the linear 
problem 

min z, 
s.t. M -  1 y _ zA 0 < A0, 

M -  i y + zA0 > At, (LP.k.)  

(wk)'  g - l y = O ,  

a<_y<[3, 

that has only 2p + 1 constraints, p + 1 variables and 
2 p  slack variables, while in the general case it 
should have 3p + 1 constraints, p + 1 variables and 
3p slack variables. 

Based on this transformation, the following algo- 
rithm enables us to compute the maximum tolerance 
percentage, solving a minimum number of linear 
problems. 

1. Let J = { k ~ K ,  ~-k< +to}, C={¢} ,  ~-= +0o; 
For each k ~ J do 
tk ( _  p k o p k o .  = Er= lw;Ar)/(Er= l[Wr IAr), 

h 0  2. Let th=min{t k, k ~ J } ;  Let Arh=A°r+yr~r,  
where yr h = thsg(w)); If A h ~ A, then r h = th, 
C = C U {h}, ~" * = 7h; otherwise proceed to step 
3. 

3. Compute ~'h as the solution to (P.k); Let C = C U 
{ h } ; i f r h < r ,  t h e n ~ ' = ~ ' h , J = { k E J ,  t k < r }  \ 
{h}; otherwise J = JN{h}. 

4. If J = {¢} then ~- * = ~'; otherwise return to step 
2. 

The above algorithm works as follows: for those 
indices whose 7 k is finite, we compute an initial 
solution using the formula for the unconstrained 
case. For the index h where the minimum is at- 
tained, we check if the perturbed weights generated 
are included in the region A, in this case, the initial 
value is the maximum tolerance. Observe that the 
other ~'k can only increase or remain equal when 
introducing additional information. Otherwise, we 
recompute z h as the solution to (P.k), and consider 
all the indices whose present values are strictly less 
than the computed value for r h. If there are not such 
indices then we have obtained the maximum toler- 
ance percentage. Otherwise, we repeat the procedure. 
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We also keep register of  the indices whose real ~'h 
has been computed. 

Once the maximum tolerance percentage has been 
obtained as a measure of  the sensitivity of  an effi- 
cient solution to changes in the weighting coeffi- 
cients, the decision maker  may want to explore the 
impact on sensitivity of  different assumptions about 
a priori information available. The following results 
can be used in this sense. 

Assume that ~-* is computed for A = { A > 0 ,  
MA >0} ,  M - l _ > 0 ,  and we want to analyze the 
effect on the tolerance percentage, of  the addition of  
a new constraint, aA > 0, on the weighting coeffi- 
cients. 

Let us denote A~ = {A > 0, MA > 0, aA > 0} and 
v = a M  - t ,  then it is easy to check the following 
facts on the relationships between A and A~. 
1. v > 0 ~* A a = A (the new constraint is redundan0. 
2. v <_ 0 , 0  A a = ~ (the system is inconsistent). 
3. Otherwise A~ c A (The weight region is reduced). 

Based on these assertions, we analyze some par- 
ticular useful cases. A proof  of  the following propo- 
sition can be found in Mk 'mol  et al. (1996). 

Propos i t ion  1. (1) I f v  i < 0, f o r  all i = 1 , . . .  ,p ,  and 
there exist  j with vj = 0, then A a is the convex  cone 

generated by the columns o f  M - l  corresponding to 

Vr "~'-- 0. 
(2) I f  v i <_ 0, f o r  all j _4= i and v i > 0, then Aa = 

{ A > 0, [MA > 0}, where  M is a nonnegat ive inverse 
matrix  such that M -  i = M -  l V, with 

V =  

V i 

O i 

- - V  I ... - - V r _  1 1 - - V r +  1 "'" - -  Up 

V i 

Oi 

4. E x a m p l e s  

To illustrate the above results, consider the fol- 
lowing multiple linear program taken from Hansen et 
al. (1989). 

max  Cx , 

s.t. A x  = b,  
x > 0 ,  

where 

i o o o) 
C =  1 1 2 0 0 , 

1 1 1 0 0 

a (4 9 7 l0 0) 
1 1 3 40  0 1 ' 

Considering A ° =  (1, 1, 3) and solving the 
weighted sum problem, an efficient basic solution of 
the problem is obtained. The optimal basis is B = 
{xt,  x4}, K = {2, 3, 5, 6} and the reduced cost matrix 
W associated to this basic efficient solution is given 
by 

38/30 - 8/30 8/150 - 16/75 / 
W = 32/30 18/30 2/150 - 4 / 7 5  I" 

-39/30  -21/30 -59/150 3/75 ] 

With no a priori information delimiting the range 
of  values of  the objective function weights, only 
A i > 0, we obtain 

~'2 = 4 7 / 1 8 7 ,  7" 3 = 4 3 / 9 9 ,  ~'5 = 167/177 ,  

~'6 = 11 /29 .  

Thus, the maximum tolerance percentage is ~" * = 
~'2 = 4 7 / 1 8 7  = 25.13%. This means that any varia- 
tion of  up to 25.13% in the estimated values of  the 
weights does not change the efficient solution ob- 
tained. 

In case (1), the linear problems that we have to 
solve to compute 7 *, have less variables than the 
initial problem. In case (2), as the procedure to 
compute 7-* is based on the matrix .~ -1 ,  and we 
have explicitly its expression in terms of  M-~ and 
V, it is easy to recompute the values of  T k. 

4.1. Example  1 

Suppose that the DM is able to order the impor- 
tance of  its objectives, and he establishes the follow- 
ing order on the weighting coefficients: 0 < A~ < A 2 

< A 3 
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The procedure to obtain the new maximum toler- 
ance percentage is as follows: 

The information can be written as MA > 0, where (, 0o / (,o0 / 
M =  - 1  1 0 , M -1 = 1 1 0 • 

0 - 1  1 1 1 1 

Now it fol lows from algorithm 1, step 1: 

(W) 'M -1 

3 1 / 3 0  

- 1 / 3 0  

- 4 9 / 1 5 0  

- 17 /75  

wSt (M-~)~  < O, 

- 7 / 3 0  - 3 9 / 3 0  

7 / 3 0  - 2 1 / 3 0  

- 5 7 / 1 5 0  - 5 9 / 1 5 0  

- 1 / 7 5  3 / 7 5  

V r ~  ~'5 = +0% 

J = ( 2 , 3 , 6 1 ,  C = { # } ,  ~ '= + ~ .  

And from step 2: 

t 2 = min ,  ~ j{ tk} = 4 7 / 1 8 7 .  

1 + t  2 

A 2 = 1 + t 2 , M A  2 >__ O ,  

3(1 -- t2) 

and thus 

7 2 = t  2, C = { 2 } ,  ~'* = r  z = 2 5 . 1 3 % .  

The maximum tolerance percentage has not changed. 

4.2. Example 2 

If  the DM is also able to establish the following 
lower bounds on the differences between weights: 

O < h  1, O < A 2 - A I < I ,  

we have, 

N %1 1 
- 1  

(W) tM- '  

3 1 / 3 0  

- 1 / 3 0  

- 4 9 / 1 5 0  

- 1 7 / 7 5  

2 < A 3 - a 2 , 

A <  1 , 

- 7 / 3 0  

7 / 3 0  

- 57/150 
- -  1 / 7 5  

- 3 9 / 3 0  / 

- 2 1 / 3 0  ] 

- 5 9 / 1 5 0  / " 

3 / 7 5  ] 

Using Theorem 1 and step 1. ~'2 < + o¢, r 3 = + o¢, 
~'5 = +o% 76 < +oc. 

J = { 2 , 6 } ,  C = { # } ,  r =  + ~ .  

Using step 2: 

t 2 = min k ~ ~{ tk} = 4 7 / 1 8 7 .  

1 + t  2 

A 2 = 1 + t 2 , h 2 ~ A. 

3(1 - t 2 )  

Using step 3, r z = 1,5161290, C = {2}. 

r 2 < ' r ~ ' r = ' r  2, J = { 6 } .  

Using step 4, J ~s {¢}, and again using step 2: 

t 6 = mink~ j{tk} = 11 /29 .  

1 - - t  6 

A 6 = 1 - -  t 6 , A 6 ~ A,  

3(1 + t6) 

and thus ~'6 = t6, C =  {2, 6}, ~ ' * = r  6 = 1 1 / 2 9  = 
37.931%. 

The maximum tolerance percentage has increased 
to 37.931%. 

4.3. Example 3 

Suppose that the DM is able to establish the 
following relations on the weighting coefficients: 

0 _~< A I ___< A 2 ,  3 A  2 ~ h 3. 

The information can be written as MA _> 0, where 

M =  - 1  1 , M - j  = 1 • 

0 - 3  3 

Using step 1, r 2 = + ~ ,  "I" 3 = + m, "r 5 = + oc, ~'6 < 
-t-oo. 

J = { 6 } ,  C = { ¢ } ,  r =  +oo. 

Using step 2: 

t 6 = mink~ j{tk} = 1 1 / 2 9 ,  

1 -- t 6 

A 6 = 1 - -  t 6 , A 6 ~ A,  

3(1 + / 6 )  

and t h u s r  6 = t  6 , r *  = z  6 = 1 1 / 2 9 = 3 7 . 9 3 1 % .  
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5. Conclusions and extensions 

In a previous paper, Hansen et al. (1989) dealt 
with the problem of determining the maximum toler- 
ance percentage on weights deviations for a Multiob- 
jective Linear Problem. They developed general re- 
sults, obtaining useful expressions for the case when 
there is no information about the weights, and for the 
case where weights are known to vary in intervals. 

In this paper, we enlarge the range of meaningful 
regions that can be handled easily by this approach, 
and obtain easy procedures to compute the maximum 
tolerance percentage to simultaneous and indepen- 
dent variations on the weighting coefficients that 
generate an efficient solution. The results we develop 
include as particular cases those of Hansen et al., 
1989, and are useful to address the problem when the 
information that the decision maker is able to give 
consists of relationships between the importance of 
the different objectives, in terms of marginal substi- 
tution rates. 

The procedures that we propose can be extended 

to any region of weights that are convex cones 
whose generators are known. 
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